

Introduction

- Each year an estimated 2.4 million eye injuries occur in the United States
- Men >> women
- 20-50 years of age
- Occupational Safety and Health Administration (OSHA) estimates workplace eye injuries cost \$300 million a year in lost productivity, medical treatment, and worker compensation.

Mechanisms of Ocular Trauma

1. Blunt Trauma

Rapid IOP increase and equatorial expansion.

2. Sharp Object

Full or partial thickness laceration. Penetrating or perforating.

3. Projectile

High speed, small sized particles may penetrate eye wall.

History

- What happened... • High-velocity trauma?
 - Sharp object?
 - Blunt trauma?
 - Assault?
 - Any other injuries?

• Get the WHOLE story..

Basic examination

- 1. History
- 2. Visual acuity
- 3. Pupils
- 4. Slit lamp
- 5. Extraocular motilities
- 6. Intraocular pressure
- 7. Fundus

When there is concern for open globe, do we.. 1. Check EOM 2. Check IC 3. Dilate? Not if the globers obviously open or disorganized.

Adnexa

Eyelid lacerations Orbital fracture Cornea + Conjunctiva Corneal abrasion Conjunctival laceration Corneal foreign body Chemical burn

Anterior Chamber Hyphema Retina

Vitreous Hemorrhage Retinal tear or detachment Commotio retinae Purchter's Retinopathy Choroidal rupture Open Globe

Small, superficial abrasions

- Rinse and clean wound
- Inspect gently for depth of damage
- Topical antibiotic ointment
- •+/- Steri-Strip or Leuko-strip placement
- •+/- Tissue adhesive
- Assess if tetanus booster is up to date

When do we treat?

- Superficial, simple lacerations that are:
 - 1. Horizontal
 - 2. Follow the skin lines
 - 3. Involve less than 25% of lid length

...will usually heal well without suturing

Evaluating orbital fractures

1. Visual acuity, pupils

- 2. Palpate
- Crepitus, orbital rim, hypoesthesia
- 3. Exophthalmometry
- Proptosis vs enophthalmos
 4. Motilities
- Individual gazes with cover test
- 5. Dilated exam
- 6. ROS:
- Nausea, bradycardia, light-headedness?

Oculocardiac Reflex

- Triad of signs: 1. Bradycardia (<60 bpm)

3. Syncope

• Indication of trapped muscle or soft tissue

- More common in children or young adults
 - More bone elasticity "Greenstick fracture"

When do we order imaging??

When do I order imaging?

- Enophthalmos or exophthalmos
- Diplopia in primary gaze
- Notable EOM restriction in any gaze
- Small to moderate diplopia lasting > 1-2 weeks

What are we looking for on CT?

- Deflected EOM course
- Orbital emphysema
- Sinus debris/blood
- Displaced vs non displaced fracture
- Globe displacement Orbital content herniation

Management of Orbital Fractures

- \bullet Ice packs and nasal decongestants x 1 week
 - Warn not to blow nose, Valsalva, etc
 - Tylenol for pain
- When do I prescribe oral antibiotics?
- Should I refer this patient?

When do I prescribe oral antibiotics?

- Consider deferring use for <u>low risk patients</u>¹
 Those without URI
 - Those not using steroids or otherwise immunosuppressed
- 0.8% infection rate in orbital fractures in 2005 Australian study²
- When you *do* prescribe, consider 5-7 day course • (*i.e. cephalexin or penicillin derivative*)

Conjunctival laceration

Partial or full thickness

• Full thickness can affect underlying Tenon's capsule or sclera

• Common etiologies

- Fingernail
 Make up wand / brush
- Pet claw
- Tree branch

Personal favorite

Conjunctival laceration

- Partial thickness vs full thickness?
- Any underlying scleral laceration?
- Seidel test "paint" fluorescein strip over area of concern

• Broad spectrum antibiotic drop or ointment • Rarely require surgical repair

Clinical Evaluation

Symptoms

- Conjunctival inflammation, epiphora, photophobia
- +/- blurred vision

Signs

- Epithelial defect, no infiltrate*
- +/- corneal edema
- +/- mild AC reaction

Management of Corneal Abrasions

- 1. When do we debride the epithelium?
- 2. When do we use bandage contact lenses?
- 3. When do we cycloplege?
- 4. How closely do we follow up?

Management of Corneal Abrasions

1. When do we debride the epithelium?

Loose tags of devitalized epithelium will not "tack" back down.

Debride when loose tissue will *impede* healing.

Can be done with cotton swab or Weck Cell.

Management of Corneal Abrasions

 When do we use bandage contact lenses?
 Depends on patient and pain level, but they can be of huge benefit!

Think again:Questionable reliability of patient follow up.Contact with vegetative matter.Any question of infectious component.

Management of Corneal Abrasions

. When do we cycloplege?

Consider when: Large Secor Secor

Large abrasion Secondary corneal edema Secondary AC reaction

Secondary AC reaction.. Should we use steroids?

Management of Corneal Abrasions 4. How closely do we follow up? More involved treatment = more often! BCL placement: See every ~2-3 days Replace BCL unless damage > benefit

No BCL:

Every ~3-5 days

Corneal Foreign Body

Corneal foreign body

- Second most common form of ocular trauma
- Most common materials: metal, glass, organic material
- Personal favorite: insect wing
- Least favorite: worker's comp

- 1. Record mechanism
- 2. Assess depth of FB, check AC
- 3. Infiltrate?
- 4. DFE
- 5. Educate and consent patient

- 6. Lift foreign body
 25-gauge 5/8" needle tip*
 Magnetic spud
- 7. Burr / Algerbrush
- 8. Antibiotic +/- cycloplegic
- 9. Follow closely

Chemical burn

- 36,000 chemical burns annually in US*
- Men > Women
- Most at risk?
- 20 to 29 year-olds
- Work environments
- Alkaline (54%) > Acid (46%)*
 - Alkaline (pH > 10): cement, cleaners, bleach, ammonia, fertilizer
- Acid (pH < 4): sulfuric, hydrochloric, hydrofluoric, battery acid

Roper-Hall Classification Method for Ocular Chemical Burns				
Grade	Prognosis	Cornea	Conjunctiva/Limbus	
1	Good	Corneal epithelial damage	No limbal ischemia	
Ш	Good	Corneal haze, iris details visible	<1/3 limbal ischemia	
Ш	Guarded	Total epithelial loss, stromal haze, iris details obscured	1/3 to 1/2 limbal ischemia	
IV	Poor	Cornea opaque, iris and pupil obscured	>1/2 limbal ischemia	

Dua Classification Method for Ocular Chemical Burns					
Grade	Prognosis	Limbal Involvement	Conjunctival involvement		
I.	Very good	0 clock hours	0%		
Ш	Good	≤3 clock hours	≼30%		
ш	Good	>3-6 clock hours	>30–50%		
IV	Good to guarded	>6–9 clock hours	>50–75%		
v	Guarded to poor	>9-<12 clock hours	>75-<100%		
VI	Very poor	Entire limbus	Total conjunctiva (100%) involved		

Good	Better	Best
Clean tap water	Balanced saline solution (BSS)	Cederroth, Diphoterine, etc.
Holding eyelids open	Eyelid retractors	Morgan lens

Diagnosis & Management

- Grade I:
 Prednisolone acetate 1% QID
 Polytrim or erythromycin QID

 - Atropine BID • Frequent non-preserved ATs
 - Follow every 2-3 days

Grade II-IV
• Prednisolone acetate 1%
 Progestational steroid
medroxyprogesterone
be used after 7-10 da
Polytrim QID
Atropine BID
• Oral:

Q1-2h

(i.e. e 1%) may

Doxycycline 100mg BID
Vitamin C 2g BID

• Follow every 1-2 days

Traumatic iritis or hyphema

- Accumulation of white or red blood cells in anterior chamber
- Typically result of blunt trauma
- May be associated with obvious iris trauma • Iris tear
- Iris dialysis

Management

Topical corticosteroids Q2-4h Slow taper Topical cycloplegic daily BID • Stop when AC nearly quiet

Acetaminophen PRN

Avoid ibuprofen or aspirin!

- Take it easy
- Restrictions to ambulation only Head of bed elevated 30*

Other considerations

Elevated IOP?

- Topical: Aqueous suppressants
- Oral: Acetazolamide, methazolamide

Sickle Cell trait / disease?

- Test patients of African or Middle-Eastern descent
- Methazolamide *may* be used with caution

When to lower IOP?		
Sickle Cell (+)	>24mmHg	
Sickle Cell (-)	>30mmHg	

Who needs surgery? • Any corneal blood staining

- Uncontrolled IOP
 - > 60mmHg x 2 days
 - > 35mmHg x 1 week
 - > 25mmHg x 1 day in Sickle cell (+)
- Total hyphema > 5 days

Other Considerations

Iris trauma?

Avoid gonioscopy for at least 1 month, but DO IT

What do the numbers show?

- Angle recession present in up to 85% of patients with hyphema¹
- Higher risk of glaucoma²:
- Angle recession ≥ 180° More pigment in TM Higher initial IOP

Flashes & Floaters & Vitreous Hemorrhage

Vitreous hemorrhage

- Ask about symptoms!
- What does the *other eye* look like?
 Any signs of retinopathy, vein occlusion, neovascularization, etc
- Where does blood come from?
 - 1. Vitreoretinal
 - 2. Retinovascular
 - 3. Trauma
 - 4. Choroidal (less likely)

Small vit heme: good visualization NVD/ NVE? Hemorrhagic PVD? May occur at disc More common in in patients on blood thinner 70% of hemorrhagic PVDs have a retinal tear

Hemorrhage

Traumatic Retinal Detachments

Typically Rhegmatogenous

- Associated with retinal tears or dialysis
- Typically has a corrugated surface

Vitrectomy + gas/oil Scleral buckle + laser

Commotio retinae

- Caused by blunt trauma
- Visible retinal whitening
- May be associated with retinal or subretinal hemorrhages
- Immediately following trauma, patient may notice blurred vision or a "dim spot"

Commotio retinae

Management

- Assess for any comorbid features of ocular trauma
- No acute treatment
- Monitor in 1-2 weeks

Typically resolves on its own and remains largely asymptomatic unless complications arise involving the macula

Purtscher's Retinopathy

- Cotton wool spots, hemorrhage, and "Purtscher flecken" in the posterior pole, predominantly around the optic disc.
- Vision loss may be immediate or delayed
- Etiology
 - Head trauma
 - Compressive chest injury
 - "Purtcher-like retinopathy" \rightarrow Long bone fracture, vasculitis, pancreatitis

Putcher's Retinopathy: in summary

• Vision loss 0-48 hours after injury

Treatment options limited

- High dose IV steroids have been used
 Benefit is not statistically significant¹
- Prognosis
 - Guarded
 - Based on initial VA

Choroidal Rupture

- Break in the choroid, Bruch's membrane, and the retinal pigmented epithelium
- Etiologies
- Trauma
- Choroidal neovascularization (CNV)
 Angioid streaks
- Tumor

Signs of choroidal rupture Multi-layered deep red or purple hemorrhage Sub-RPE hemorrhage Sub-retinal hemorrhage

Signs of choroidal rupture

- Multi-layered deep red or purple hemorrhage
 - Sub-RPE hemorrhage
 - Sub-retinal hemorrhage

 Concentric yellow or white subretinal streaks Often located near optic nerve

Complications

- Choroidal neovascular membranes (CNVM) more likely¹:

 - Older ageMacular location
 - Longer length of rupture
- Treatment
 - Careful observation for SRF • Anti-VEGF injections \rightarrow when vision threatening
- Outcome depends primarily on location of injury

Mechanism of injury

Open globes do not discriminate!

Blunt trauma leads to scleral rupture Equator: posterior to muscle insertions
Limbus: corneoscleral junction

Projectile or sharp objects

- Penetrating injury
- Perforating injury
 Intraocular foreign body (projectile)

Evidence of open globe

- Penetrating eyelid injury
- Extensive subconjunctival hemorrhage
- Shallow or flat anterior chamber
- Vitreous hemorrhage or hyphema
- Hypotony
- Irregular pupil (especially peaked!)
- Intraocular foreign body (IOFB)

Avoid certain testing in obvious globes

- 1. EOMs \rightarrow in obviously disorganized globes
- 2. IOP \rightarrow when uveal contents exposed or corneal laceration
- 3. Dilate \rightarrow when uveal contents exposed

Calculation of the OTS Ocular Trauma Initial visual factor Raw points Score (2002) NLP=60 LP to HM=70 1/200 to 19/200=80 20/200 to 20/50=90 ≥20/40=100 -23 -17 14 A. Initial visual acuity category Helpful in counseling patient B. Globe rupture C. Endophthalmitis D. Perforating Injury E. Retinal detachment F. Afferent pupillary defect • Can aid in decision-making -14 -11 -10 Probability of visual outcome Raw OTS–Score LP/HM score sum category NLP (%) (%) 1/200-19/ 20/200-20/ ≥20/ 200 (%) 50 (%) 40 (%) 17 26 11 0-44 73 28 7 2 0-44 45-65 66-80 81-91 92-100 HM, hand Trauma So 13 15 28 21 44 74

Open Globe: what should we do in office?

- Considered an emergency
- Protect the globe by placing a hard shield
- Instruct patient not to touch or rub eye
- Have patient stand or sit upright
- No food or fluids
- Up to date on tetanus?
- Will be done at referral site, typically

Open Globe: what happens next?

Open globe confirmed/suspected

Imaging

• CT orbit 1mm cuts w/wo contrast

- Assess tetanus status
- Systemic antibiotics (PO levofloxacin vs IV)
- Topical vancomycin or vigamox

- Start antiemetic
- Fox shield + bed rest (bathroom privileges)

• Medical clearance for anesthesia • NPO (6+ hours)

Surgery • Goal is to close the globe and remove any IOFB

Open Globe: what happens next?

- Globe repairs often require multiple steps
- Outcome ultimately depends on..
 - Mechanism of injury
 - Severity of initial injury
 - Time to treatment/evaluation
 - Patient follow up and compliance

Case 2

Young male presents with left eyelid and facial swelling + pain after motor vehicle accident.

Middle aged female presents with irregular pupil after falling and hitting edge of table this morning.

Case 4

Young male presents with redness and irritation after being poked in the eye by a opponent's finger playing basketball.

Case 5

Young male with decreased vision in the left eye.

One month prior, he sustained a corneal abrasion at construction site that was treated with topical antibiotics.

ase courtesy of Nimesh Patel MD & Diana Laura MD

• 20/20 OD, 20/200 OS

- AC quiet / formed
- Vitreous haze
- Poor view posteriorly

